
“Watching over the shoulder of a professional”:
Why Hackers Make Mistakes and How They Fix Them

Irina Ford, Ananta Soneji, Faris Bugra Kokulu, Jayakrishna Vadayath, Zion Leonahenahe Basque,
Gaurav Vipat, Adam Doupé, Ruoyu Wang, Gail-Joon Ahn, Tiffany Bao, Yan Shoshitaishvili

Arizona State University
{iford3, asoneji, fkokulu, jkrshnmenon, zbasque,
gvipat, doupe, fishw, gahn, tbao, yans}@asu.edu

Abstract—The complex and diverse nature of software systems
necessitates a careful manual approach to unveil vulnerabil-
ities, involving deep analysis, creative problem-solving, and
specialized expertise. Like all complex tasks, it’s susceptible to
mistakes stemming from cognitive limitations and behavioral
factors that hinder optimal performance. Although there are
significant research efforts focused on vulnerability discovery,
little attention has been given to comprehending mistakes
within the process. Understanding these mistakes could pave
the way for better-designed education programs and automated
tools, aiming to mitigate and prevent potential mistakes and
enhance the efficiency of vulnerability research.

In this paper, we leverage social media, specifically
YouTube, to examine mistakes made by security content cre-
ators exploiting vulnerabilities in CTF-style challenges. Ana-
lyzing 30 screencasts from 11 hackers, we identified 124 distinct
issues and investigated their types, underlying causes, and time
investments. Additionally, we delved into the cognitive and
behavioral aspects associated with these issues.

1. Introduction

The software that runs so many aspects of modern life—
from our calendars to our pacemakers—is, unfortunately,
rife with security vulnerabilities. Addressing these vulnera-
bilities before attackers find and exploit them is of utmost
importance. In practice, white-hat security researchers find
it necessary to exploit vulnerabilities for developers to take
reports seriously [5, 43]. As Felix “FX” Lindner aptly put it,
“It’s hard to argue with a root shell” [23]. Thus, the white-
hat security process involves not just vulnerability discovery
but also vulnerability exploitation.

Despite advancements in automatic techniques, the ex-
ploitation of vulnerabilities is still heavily reliant on manual
effort. This effort is non-trivial and highly technical: as
discussed by the hackers in Votipka et al.’s study, exploit
generation “can be the most time-consuming part of the
[hacking] process” [43]. Anecdotally, this sentiment is well-
supported in the community: hacking (the term that we use

in this paper to refer to the two-step process of vulnerability
discovery and exploitation) takes enormous amounts of time,
further straining already overworked security researchers.

Interestingly, little research has explored why hacking
is time-consuming, hindering progress in improving this
situation. We, as long-time practitioners in both security ed-
ucation and security research, intuit that a large contributor
to the time cost of hacking is the mistakes that hackers make:
the process of hacking is extremely error-prone, and every
error might lead a hacker down time-consuming, false paths.
It follows that understanding these errors is imperative for
enhancing the overall efficiency of hacking.

In this paper, we explore this intuition by carrying out
the first study of mistakes made by hackers while hacking to
understand what they are, why they happen, and how they
impact the process. We leverage preexisting self-recorded
YouTube videos of security content creators exploiting vul-
nerabilities in binary code. Our study focuses explicitly on
mistakes made by 11 hacker subjects performing hacking
activities in 30 screencasts. We analyzed each activity to
identify mistakes, extracted behaviors associated with these
mistakes, evaluated their impact, and studied how hackers
commit, notice, and resolve them. Our study reveals that
all subjects made at least one mistake, and the time cost
associated with these mistakes consumes on average 40% of
the entire process, validating our intuition and underscoring
the need to understand (and develop solutions to prevent)
these mistakes.

More broadly, we aim to answer the following research
questions through our study and resulting analyses:

RQ1: What types of mistakes do hackers make in the
hacking process (Section 4)?

RQ2: In what ways do these mistakes impact hackers, in
the context of the entire hacking process
(Section 5)?

RQ3: What are the non-technical factors that cause mis-
takes, and what techniques do hackers use to miti-
gate and avoid mistakes (Section 6)?

RQ4: How do hackers strategically handle mistakes
(Section 7)?

By exploring the above questions, we made several novel
observations related to mistakes in hacking. First, our study
identified four different broad types of mistakes and found
that the sub-category of “memory operation-related mistakes
in exploit generation” was the most prevalent and time-
consuming, accounting for a full 24% of total hacking time.

We also studied the causes of mistakes, with the most
prominent (Memory Lapses, Unawareness of Strategy, and
Lack of Attention) resulting in 23% of the total mistakes
in our dataset. Once mistakes are made, their detection
by hackers can be significantly delayed, especially early
in exploit development, and hackers spend 12% of their
time operating in the presence of undetected mistakes. We
found that hackers spend a plurality of their time debugging
mistakes (17% of total hacking time) and implementing fixes
for mistakes (11% of total time). Our analysis of hackers’
interactions with their audience indicates that collaboration
can serve as a powerful tool for improving the efficiency
of exploitation. Additionally, integrating advanced exploita-
tion frameworks, such as pwntools can proactively address
unforeseen issues and boost efficiency in exploitation.

This analysis of hacking mistakes suggests areas for
improvement in educational and technical approaches to
hacking. For example, the amount of time lost to mistakes
in memory calculations in our study mirrors findings about
student difficulties in memory management in program-
ming [6, 22], and suggests that additional education effort in
this area may benefit both software development and hack-
ing. Furthermore, the hackers in our study employed a wide
variety of disparate techniques in recovering from mistakes,
hinting at promising impact from a future common “de-
bugging curriculum.” Finally, tooling and technique efforts
invested in helping hackers verify and quickly remediate
hacking mistakes can save significant time and effort.

Contributions. The contributions of this work are as follows:
• We study the types and causes of mistakes that

humans commit during hacking, from vulnerability
discovery to exploit development. To the best of our
knowledge, this is the first study that investigates
mistakes throughout the end-to-end hacking process.

• We develop a model of mistake identification and
resolution and quantify the impact of every stage of
the making and fixing of mistakes. This allows us to
reason about improvements in the hacking process.

• We derive novel insights into hackers’ mistakes and
propose ways to enhance hacking education and
future research.

To empower research in this space, we will release our
annotated dataset for use by future researchers.

2. Background and Related Work

Human error research. Human error research has roots in
psychology, cognitive science, and human factors engineer-
ing. It emerged from observations within complex systems

such as aviation and industry, seeking to understand why er-
rors happen and how to prevent them [18, 35, 45]. This field
draws from various disciplines and intersects closely with
decision-making models such as Decision Ladder Template
(DLT) [32, 33] and Naturalistic Decision Making (NDM)
[24]. In particular, DLT elucidates the decision-making and
action-taking processes of individuals in dynamic and high-
pressure situations. The model centers on the progression
of individuals or teams through a series of information-
processing stages when confronted with a problem. It also
considers behaviors that may arise in varying circumstances,
such as when experts encounter unfamiliar situations or
when novices undertake diverse tasks. In contrast, NDM de-
scribes specific strategies that experts use to make decisions
in familiar situations [29]. DLT has been employed across
different domains to analyze human errors in industrial
tasks, aviation, and healthcare [8, 15, 19, 21].

Our work, although distinct in scope, aspires to con-
tribute to the broader landscape of human error research by
offering unique insights into the realm of mistakes occurring
in vulnerability research tasks. To that end, we adopt a
modified version of the DLT model as a guiding framework,
leveraging its insights to evaluate hacker mistakes. This
utilization reflects the adaptability and applicability of DLT
as a tool for understanding and addressing errors in complex
and dynamic scenarios.

Mistakes in computer science. In recent years, numerous
researchers have studied mistakes occurring in software
development and security with a focus on practical solu-
tions for identifying and addressing these mistakes. These
studies employ various research techniques such as qual-
itative analysis, experimentation, and systematic literature
review, to gather data and draw insights from real-world
situations. Several studies aim to inform educational ap-
proaches and curricula, providing insights into common
errors made by novice programmers, to improve teaching
methods and learning outcomes [14, 22, 37]. Others are
concerned with identifying mistakes leading to software
vulnerabilities [16, 36, 41].

Human error in cybersecurity has predominantly been
linked to security breaches [12, 31]. However, it is crucial
to recognize that the impact of human error extends beyond
breaches, permeating various facets of cybersecurity. Our
work delves into the intricate domain of vulnerability re-
search, shedding light on the technical and human aspects
of errors in this complex and time-consuming field. Through
this work, we seek to enrich the understanding of hacking
mistakes and provide valuable perspectives that can augment
the collective knowledge base, fostering advancements in the
field and enhancing overall hacking efficacy.

Cognitive processes in vulnerability research. Cyberse-
curity research has increasingly focused on comprehending
how the human brain processes information and makes
decisions during vulnerability research tasks. Bryant [9]
conducted multi-study research which included a case study,
semi-structured interviews, and an observational study of re-
verse engineers performing specific tasks. His work resulted

in a seven-step model of sense-making in reverse engineer-
ing. Votipka et al. [42] performed an observational interview
study of 16 professional reverse engineers and found that
reverse engineering involves three distinct phases: overview,
sub-component scanning, and focused experimentation, and
provided insights about techniques used during each phase.
Burk [10] attempted to quantify the understanding of binary
programs in a large-scale experiment where participants
aimed to achieve “perfect decompilation” and showed that
it is within reach of human engineers. Mantovani [27]
quantitatively measured the behavior of reverse engineering
experts and novices during the analysis of assembly code
via the use of Restricted Focus Viewer [20]. Our study
contributes to the ongoing exploration of cognitive processes
within the vulnerability research domain. Offering a dis-
tinctive perspective, we delve into the analysis of mistakes
occurring in complex security tasks, seeking insights into
the associated cognitive and behavioral patterns.

YouTube for knowledge communication. The YouTube
video platform has been a rich source of freely accessible
and valuable artifacts for research. Snelson examined the
diverse ways in which YouTube was utilized in various
academic fields through an extensive literature review [38],
where it analyzed existing research to understand how
YouTube was integrated into teaching, learning, and research
across different disciplines. Several publications studied the
impact of YouTube on education, its role in enhancing
learning, the engagement and interactivity facilitated by this
platform, and the challenges that come with its use [11, 44].
MacLeod et al. [26] performed a qualitative study on how
software developers leverage YouTube to document and
share their programming knowledge. The study focuses on
how developers create video content, tutorials, and demon-
strations to convey coding concepts, problem-solving tech-
niques, and programming tips to a wider audience. Most
relevant to our research is the article “YouTube Security
Scene” by security content creator LiveOverflow [25]. The
author shares their experience of “watching over the shoul-
der of a professional” and how the exposure to the problem-
solving process of a YouTube streamer was instrumental in
overcoming personal learning obstacles:

To see how geohot was using the terminal, writing
exploit scripts, and navigating IDA Pro was incredibly
insightful. But more importantly, it also exposed the fails
and mistakes followed by the process of troubleshooting
and fixing the bugs. And this pushed me through the wall
I was hitting in my own education.

In our study, we use YouTube to create a distinctive dataset
on binary exploitation challenges. Most importantly, by
diverging from conventional methods (e.g., surveys, think-
aloud, and interviews), our novel approach provides condi-
tions that resemble real-world experiences and reduce biases
such as demand characteristics and the Hawthorne effect
present in conventional methods [7].

3. Method

Our primary goal was to investigate the mistakes made
by hackers during the evaluation and exploitation of vul-
nerabilities. To achieve this, we utilized a qualitative ap-
proach involving thorough analysis of 30 YouTube video
recordings, offering valuable visual insights into the hacking
process. Additionally, we analyzed the accompanying audio
narratives from collected screencasts. Such a study design
allowed us to conduct a rigorous examination of both tech-
nical aspects and contextual insights of hacking mistakes.
This study received an exempt determination from Arizona
State University’s Institutional Review Board (IRB) since
the data collection and analysis were conducted on publicly
available YouTube data, thus further obviating the need to
contact the hackers.

In this section, we describe the data collection process,
the mistake framework that we used to conduct our work,
the data analysis methods, and the limitations of our study.

3.1. Data Collection

TABLE 1: Demographics of hackers involved in the study
(as of September 2023).

HID Source Chall Joined Last N N
solved YT video subscr vid

H1 Keyword search 5 2018 2019 69 8
H2 Keyword search 5 2011 2023 4.04K 447
H3 securitycreators* 1 2007 2022 8.86K 41
H4 securitycreators 2 2013 2023 42.2K 149
H5 Keyword search 4 - - - -
H6 securitycreators 8 2013 2020 2.89K 82
H7 securitycreators 1** 2013 2023 2.03K 41
H8 Keyword search 1 - - - -
H9 securitycreators 1 2017 2020 15.3K 70
H10 securitycreators 1 2015 2023 835K 413
H11 Keyword search 1 2006 2021 9 48

* https://securitycreators.video
** Hacker solved the same challenge twice one year apart

YouTube videos selection. Our goal was to curate a di-
verse yet representative sample, offering insights into diffi-
culties encountered by hackers in vulnerability recognition
and exploitation. For our research, we targeted YouTubers
recording themselves solving Capture-The-Flag (CTF) style
challenges on war-gaming platforms such as PicoCTF [2],
pwnable.kr [3], OverTheWire [1], and others. Our inclusion
criteria encompassed videos a) featuring binary exploitation
challenges, b) solved without previously seeing the chal-
lenge (blind-solving), and c) where hackers made at least
one mistake while solving the challenge.

We started our search for YouTube videos with the iden-
tification of certain keywords. Our keywords list contained
terms and phrases like live hacking, hacking livestream,
binary exploitation, pwnable, and PicoCTF. With this list, a
preliminary search on YouTube allowed us to identify most
of the hackers for our study. In addition, we conducted a
quick scan through the Security Creators website [4], where
hackers’ short descriptions and media links were posted.
Some streamers advertised channels with similar content in
their videos, which we also used in our search. Following

this process we selected 11 hackers for our study. Table 1
provides essential hacker demographics as of September
2023.

In total, we were able to identify more than 90 videos
on the selected hackers’ YouTube channels pertinent to our
research. At this stage, we performed a more detailed scan
through videos to apply our inclusion criteria. Notably, to
satisfy the blind-solving (hackers should not have seen or
solved the challenge before) inclusion criterion, we relied
on explicit statements made by the streamers or observed
their behavior.

Of the 11 hackers we selected for the study, seven
explicitly noted that they were solving the challenge without
previous knowledge. The remaining four hackers implied
they were blind-solving. One of the hackers stated they
were skipping a known challenge, implying they only solved
unknown challenges in their video. Another hacker was
participating in a competition with rules for only blind-
solving challenges. The last two hackers had no implicit
indicators; however, they are widely known for posting
videos of blind-solving challenges.

Following the selection process, a final sample of 30
YouTube video streams created by 11 hackers with total
footage of 61 hours was chosen for in-depth analysis.
Video descriptions. Screencasts were conducted by hackers
spanning the period from 2014 to 2020. Most videos were
created in Full HD (1080p) with good audio quality. One
video had a resolution of 480p, and two videos exhibited
high background noise, thus providing a low level of clarity
and detail and complicating analysis. 30 screencasts con-
tained 31 challenges (two challenges were solved during
the same stream) from CTF competitions or war-gaming
platforms. Only 28 of them were unique as two challenges
were solved by two different people and one person solved
the same challenge one year apart. More than half of the
streams (n = 18) contained other content not relevant to
our study. The time of solving a challenge varied from 8
minutes to 3 hours 7 minutes with the total time of analyzed
video material amounting to 35.6 hours.

Challenges included x86 and x86-64 vulnerable Linux
binaries with varying degrees of protection. Source code and
libc files were provided in 13 and 6 challenges correspond-
ingly. To solve the challenge streamers had to understand the
binary, identify vulnerability, and exploit it to gain control
over the program: spawn a shell, or retrieve a specific flag.
The difficulty of a particular challenge was hard to assess
since streams were created over 7 years, however, they can
be categorized as beginner-intermediate level. Challenges
covered a spectrum of memory corruption vulnerabilities,
such as arbitrary read and write, stack buffer overflow,
format string, heap unlink and use-after-free, stack frame
corruption, and stack-use-after-return. Detailed character-
istics of selected videos and challenges are presented in
Table 2.

During the solving process, streamers used either a local
or remote (server) environment. While working in a local
environment all streamers used a standard set of applications
to solve challenges, which included a web browser, terminal,

disassembler/decompiler suite (IDA, Hopper, Binary Ninja,
Radare), debugger, and text editor (IDE). Depending on their
needs they could use utility applications such as calculator,
paint, and hex editor. In several instances, hackers had to
perform particular tasks remotely and utilize the software
available on the server, usually GDB without extensions
and Vim editor. Most of the time hackers had to write a
Python script to exploit a vulnerability unless they could
use a bash one-liner or just supply a short numeric input
while interacting with the challenge (e.g., format string
vulnerability).

Ethical considerations: All YouTube videos are part of
the public domain and can be found online. While we do
not disclose hacker names, the identities can still be inferred
due to the public nature of used artifacts.

3.2. Mistakes Analysis

We conducted both technical and qualitative analyses on
the screencasts to address our research questions.
Technical analysis. We used a multi-phase process to
thoroughly analyze screencasts for the contained mistakes.
Initially, the primary researcher identified mistakes, deter-
mined their timeframes using the mistake anatomy frame-
work (Section 3.3), and defined root causes. Subsequent
verification and validation processes were implemented to
ensure accuracy and reliability. The verification phase fo-
cused on confirming the existence and nature of identified
mistakes, while the validation phase probed the underlying
root causes.

During the verification phase, we selected one mistake in
each video using simple random sampling and delineated a
10-minute video snippet containing this mistake. In 15 out of
31 cases, these snippets featured two or three mistakes. Two
expert researchers with top-level CTF experience indepen-
dently verified 48 issues identified by the primary researcher.
This process uncovered three new mistakes and combined
two, totaling 50 (40%) of the 124 issues. The agreement
percentage among the three researchers determined the re-
liability. Disagreements were addressed at reconciliation
meetings until more than 90% of agreement was reached.

This rigorous verification helped in consensus-building
and set the stage for the validation phase, where one expert
researcher performed validation of the mistakes timeframes
and root causes by reviewing all videos.

We classified identified mistakes based on the root cause
and applied different visualization techniques to uncover in-
herent trends and patterns and answer our research questions
(RQ1-2).
Qualitative analysis. To better understand cognitive aspects
of hacker mistakes and streaming behaviors, we analyzed
narratives from the videos using an iterative open coding
process [39]. Initially, we randomly selected five challenges
from five different hackers and three researchers individually
examined the video transcripts to create individual code-
books. Then researchers met to discuss their codebooks and
designed a unified codebook with an attempt to group open

TABLE 2: Characteristics of all hacking videos and the challenges involved in these videos.

HID CID1 Wargame/CTF Year Res2 Views Challenge Arch Source code / Vulnerability
platform streamed count3 duration4 protections5

H1

C1

pwnable.tw

2019 1080 332 1:36:00 x86 C, NX arbitrary read and write
C2 2019 1080 193 1:28:00 x86-64 NX, stripped arbitrary write
C3 2019 1080 185 0:56:00 x86 C, NX, stripped, libc heap use-after-free
C4 2019 1080 112 0:57:00 x86 R, NX, libc stack buffer overflow
C5 2019 1080 137 1:21:00 x86 C, NX, libc stack-use-after-return

H2

C6

pwnable.kr

2018 1080 1,119 0:55:00 x86 C, NX stack frame corruption
C7 2017 1080 1,162 0:43:00 x86-64 S, C, NX heap use-after-free
C8 2018 1080 1,165 1:21:00 (2:37:00) x86 S, NX heap unlink
C9 2018 1080 580 1:17:00 (1:26:00) x86 C, NX, libc stack buffer overflow with ret2libc
C10 2018 1080 554 2:39:00 (7:04:00) x86 C, NX stack buffer oferflow, canary bypass

H3 C11 custom 2020 1080 782 0:25:00 x86-64 NX stack buffer overflow

H4 C12 PicoCTF 2019 1080 6,111 0:28:00 x86-64 S, NX stack buffer overflow
C13 2020 1080 3,817 2:42:00 x86 S, C heap use-after-free

H5

C14 OTW 2014 480 700 0:12:00 x86 S, ? out of bounds memory access
C15 pwnable.kr 2014 1080 917 1:00:00 x86 C, NX, libc stack buffer overflow with ret2libc
C16 OTW 2014 720 93,550 0:24:00 x86 NX stack buffer overflow
C17 2014 720 93,550 1:05:00 x86 NX format string with GOT overwrite

H6

C18

PicoCTF

2019 1080 317 0:16:00 x86 S arbitrary write
C19 2019 1080 162 0:14:00 x86 S, NX stack buffer overflow
C20 2019 1080 135 0:40:00 x86 S, NX, PIE stack buffer overflow with ret2libc
C21 2019 1080 179 0:25:00 x86 S, NX format string
C22 2019 1080 208 0:08:00 x86 S, NX arbitrary write
C23 2020 1080 225 2:13:00 x86 C, NX format string with GOT overwrite
C24 2020 1080 126 0:45:00 x86-64 S, C arbitrary write
C25 2020 1080 361 1:48:00 x86-64 S, C, NX, libc heap use-after-free

H7 C26 RopEmporium 2018 720 1,076 1:13:00 x86-64 NX arbitrary write
C27 2019 1080 1,010 1:53:00 (1:58:00) x86-64 NX arbitrary write

H8 C28 custom 2018 720 1,259 3:07:00 x86-64 R, C, NX, PIE out of bounds memory access
H9 C29 PlaidCTF 2017 1080 4,020 1:05:00 x86-64 S, R, NX, PIE, libc out of bounds memory access
H10 C30 OTW 2015 1080 28,861 0:54:00 x86 S, ? out of bounds memory access
H11 C31 Nightmare 2020 1080 55 1:19:00 x86 R, NX, PIE stack buffer overflow

1 C9/C15 and C14/C30 are the same challenges solved by two different hackers, C26/C27 is the same challenge solved by one hacker, all challenges correspond to
individual streams except for C16 and C17 that were solved during one stream.
2 Video resolution (pixels). C9/C10 challenges have high resolution but poor audio quality.
3 Time-sensitive information (reflects the number of views on the date of extraction).
4 Time in brackets indicates challenge duration with added pause time if a hacker paused video during stream.
5 C - Canary, NX - Non-Executable stack, PIE - Position Independent Executable, R - full RELRO, S - source code present, libc - libc file provided, stripped - symbol

information removed from binary, ? - information not available.

codes, which they subsequently employed to independently
code an additional 6 challenges from the remaining hackers.
Following that, researchers extensively discussed the new
codes and generated themes, resolving any disagreements
and refining the codebook accordingly, which helped in-
crease the validity of themes. Subsequently, to assess the
refined codebook’s applicability, researchers coded five new
challenges and revisited the initial five, aligning their coding
with the established codebook. Leveraging an iterative pro-
cess, researchers then refined the codebook by removing and
merging themes until a consensus on the final and overarch-
ing themes was achieved. The final codebook, derived from
the iterative coding process of 16 challenges, incorporated
these finalized themes. The primary researcher utilized this
codebook to code all remaining challenges.

We employed an inductive approach to qualitatively
analyze hacker streaming behaviors, with a specific focus on
mistake timeframes [40]. This approach was deemed appro-
priate for our study due to the absence of prior exploration
in this domain. Furthermore, since multiple researchers
reviewed the codes and themes and critically conducted
detailed discussions at all stages of the analysis, we do not
report inter-rater reliability. According to a meta-analysis of
CSCW and HCI publications from 2016 to 2018, only 10%
of papers using iterative open coding with multiple coders

measured inter-rater reliability [28].
Due to the qualitative nature of our results, we present

findings in Sections 6 and 7 qualitatively, sparingly offering
counts of themes to emphasize pattern prevalence. It is
crucial not to infer the prevalence of themes beyond the
sample.

3.3. Mistake Anatomy

To comprehensively describe and characterize mistakes
made by hackers, we adapted Rasmussen’s DLT model of
information processing steps of the industrial process plant
operator to handle errors [34]. The original DLT model
primarily focuses on describing the sequence of information
processing and decision-making activities that occur during
human-machine interactions. It outlines stages such as detec-
tion, observation, interpretation, evaluation, and execution,
providing a framework for understanding how errors can
propagate through these stages. Based on this model we
construct mistake anatomy (Figure 1), a framework for de-
tailed documentation and analysis of key hackers’ activities
while they try to resolve their issues. The framework serves
as a structured guide for dissecting a mistake starting from
the time when it was made by a hacker, through the earliest
point where the effects of the mistake can be noticed and

Figure 1: Mistake anatomy fit to the Decision Ladder Template (Rasmussen, 1974).

detected by a hacker to the attempts to understand the issue,
undertaking to correct it, and finally, to the time the mistake
is fixed. The key terms for the framework were crafted
through a detailed examination of several mistakes:

Origination: Hacker commits a mistake. To identify this
phase we track back the changes made by a hacker (e.g., in
code) from the observed mitigation point.

Manifestation: The earliest point where the mistakes’ ef-
fects become evident, displaying errors, incorrect output, or
the absence of expected outcomes on the hacker’s screen.

Detection: Hacker realizes an error.

Supposition: Hacker attempts to understand the issue cause.

Implementation: Hacker tries to implement a solution
based on their understanding of the problem.

Mitigation: Hacker successfully executes exploit.

DLT is a general theoretical model for understanding the
flow of information and decisions, thus it does not empha-
size the root causes or origins of mistakes, the specific nature
of the error manifestation, or the mitigation of mistakes.
In our analysis, we focused on identifying root causes and
describing temporal relationships between different phases
in a mistake life cycle as well as determining the impacts
of mistakes. To enhance the framework, we integrated as-
pects related to the origin, manifestation, and mitigation
of mistakes. The correspondence between different phases
of our mistake anatomy framework and DLT is shown in
Figure 1. Detection and implementation phases relate to
alert and execute counterparts in Rasmussen’s model, but the
supposition phase correlates with a series of activities from
observing information through selecting actions, which we
considered as activities related to debugging a problem. We
further hypothesized that supposition and implementation
phases form an iterative loop that could be correlated with
the feedback loops of DLT and that the supposition phase
can be bypassed in the process of resolving a mistake similar
to bypassing certain stages in the DLT model.

3.4. Limitations

While our study provides valuable insights into the
mistakes made by hackers during vulnerability discovery
and exploitation, we acknowledge certain study limitations.
Data collection time frame. Despite our attempts to per-
form a comprehensive search and collect all videos meeting
our inclusion criteria we still might have missed some
videos. The data collection phase stopped in 2021, however,
we continued monitoring YouTube for the appearance of
study-eligible videos until July 2023. Although many new
hacking streams emerged from 2021 to 2023, we found that
they were either tutorials or walkthroughs, or were related
to other security fields such as web or network security, and
thus did not match our inclusion criteria. We also stopped
collecting and analyzing more videos when theme saturation
was reached.
Self-reporting. One criterion for the selection of videos
was solving a challenge without prior knowledge or in-
formation about it. Usually, hackers assert blindness and
we have to trust them. Blindness is constrained by various
factors: knowing vulnerability beforehand or reading write-
ups during the stream, pausing the video to do research or
rest, collaborating with viewers, and asking for and getting
help from the audience. In one case a hacker worked on
a challenge that he previously resolved but was dissatisfied
with the subpar solution.
Researcher subjectivity. Identifying timeframes of different
activities during resolving a mistake carries a subjectivity
component, especially when trying to distinguish between
the debugging and implementation phases, which are often
tightly intertwined. During the analysis of videos, we often
observe the effect of compound mistakes (several mistakes
committed while solving a challenge), or overlapping mis-
takes (one mistake committed during resolving another is-
sue). These effects complicate both technical and qualitative
analyses by making it challenging to clearly distinguish
between timeframes / qualitative codes relating to particular
mistakes.

Observational study. Due to the observational nature of
our research, we can only partially perceive our subjects’
thoughts and emotions through their expressions.
Threats to validity. The use of CTF-style challenges as a
proxy for real-world security tasks may impact the gener-
alizability of our findings, as challenges are characterized
as beginner/intermediate-level CTF tasks and are likely less
complex than real-world code bases. However, due to the
complexity of the real-world code, our analyses would
not be scalable given our study’s granularity. While we
attempted to include a diverse set of hackers, it is essential to
acknowledge that not all may be considered industry-grade
hackers.

Moreover, we identify certain limitations stemming from
our hackers’ streaming behaviors impacting study validity:
1) the necessity to provide a solution within the time con-
straints of a stream may introduce a bias in the types and
amounts of mistakes made. Hackers might prioritize speed
over thoroughness, impacting their hacking, 2) the act of
narrating while streaming could also potentially influence
the types and amounts of mistakes made. The presence of
an audience and the need for clear communication may
lead hackers to articulate their thought processes more de-
liberately than they would in a non-streaming context, and
lastly, 3) viewers’ suggestions, comments, or interactions
could potentially influence the overall hacking experience
and hackers’ decision-making processes.

4. Technical Analysis—What Mistakes?

Through analyzing 30 video streams, we recognized 124
issues that hackers had to address when solving challenges.
Among these, we identified 117 as mistakes and orga-
nized them into four types depending on their root causes:
Programming/Miscellaneous, Implementation, Strategy, and
Tooling. We categorized the remaining issues as technical
difficulties and combined them into a Technical Issues type.
Table 3 in Appendix A presents the issue categories and their
counts. For each issue, we were able to identify a root cause
(RQ1) and determine a set of timeframes according to our
mistake anatomy framework. We used these timeframes to
estimate the duration of different phases of mistake lifetime
and evaluate the costs and impacts of these issues (RQ2).
Figure 2 presents the distributions of types of mistakes.

Next, we describe all mistake types and their temporal
characteristics. We categorize each mistake type into sub-
types for a more detailed understanding of issues within
each category.

4.1. Implementation

We categorize mistake as Implementation if it pertains
to memory operations, such as failures when reading from
or writing to memory. These operations are critical in en-
abling attackers to disclose or overwrite memory values
at controlled addresses during the exploitation of memory
corruption vulnerabilities. We discovered 50 such mistakes

Figure 2: Distribution of mistake types.

and organized them into four classes: leak, write what, write
where, and write what/where depending on their specific
actions and objectives.

Primary causes of leak errors are incorrect format string
specifiers, miscalculation of offsets from leaked library ad-
dresses, or incorrect calculation of addresses from leaked
values. The median time to resolve such mistakes was 7
minutes. The most prevalent type, write what errors (72%),
include problems with payload crafting, function argument
requirements, use of the wrong heap object, prohibited over-
writes, missing gadgets in ROP chains, and stack misalign-
ment issues. The median resolution time for these errors
was 7 minutes, with two outliers taking over 50 minutes.
Write where errors (8%) comprise mainly mistakes in offset
to overwrite a pointer, with a median resolution time of
7 minutes and cases ranging from 1 to 52 minutes. Lastly,
four instances of write what/where mistakes averaged an 11-
minute resolution time, encompassing cases of miscalculated
offsets and wrongly constructed ROP chains. More details
can be found in Appendix A.1.

4.2. Programming/Miscellaneous

One-third of all the identified issues belong to the
Programming/Miscellaneous type. These mistakes include
three sub-types: runtime errors, syntax errors, and incorrect
logic and oversight. More than half of all programming
mistakes (n = 19) are runtime errors. Hackers commonly use
undefined variables and functions and wrong type conver-
sions (sometimes resulting from typographic errors), apply
improper functions to data structures, mishandle arguments,
or misread Python help documentation, resulting in Python
exceptions and pwntools exceptions. Figure 3 shows an
example of a conversion error where a hacker forgot to pack
an integer into binary form.

We noticed three syntax error cases. The first two con-
cerned forgetting to include a header file and using an
undeclared variable. In the third case, the hacker used the
printf library function without a format string specifier,
which caused unexpected compiler optimizations to replace

1 ...
2 alloc(8, p32(0xXXXXXXXX) + elf.got[’puts’])
3 ...

Figure 3: A hacker forgot to use p32() to convert the address
of the puts() (an integer) into its binary representation in
little-endian format.

printf with puts in the binary. The hacker did not realize
this error until his audience pointed at it in chat.

13 programming mistakes involved incorrect logic and
oversight. They include an instance of an infinite loop due
to forgetting to decrement a counter, exploit logic mistakes
such as leaving old code in the exploit script, misplacing
code lines, omitting necessary function calls, or passing
incorrect arguments to function calls. Several errors emerged
from misusing pwntools functionality of send and receive
operations. Hackers spent up to 15 minutes to resolve each
mistake with a median time of 1.5 minutes. Most issues took
under 5 minutes to resolve.

The Miscellaneous type mostly includes user input er-
rors. We identify three Linux command-line input mistakes,
where hackers forgot to use the pipe symbol when feeding
the input file to the binary, passed the wrong argument to
the OneGadget tool [13], and neglected to keep stdin
open, resulting in the shell exiting. Other mistakes included
inconsistent manual input due to typographical errors and
mentally miscalculating numbers. Except for an outlier (21
minutes), mistakes in the miscellaneous sub-type were re-
solved within 4 minutes with an average time of 2 minutes.

We often observed situations where minor program-
ming issues or oversights occurred as side effects while
streamers were solving other problems (e.g., implementation
mistakes). Due to the difficulty of separately evaluating these
side effects, we did not account for them in our analysis and
only considered standalone issues.

4.3. Strategy

We consider a mistake as a Strategy mistake if any of
the following conditions occurred: (1) a hacker injected a
poorly crafted payload that did not execute as expected,
resulting in a failure to gain control over the system; (2)
a hacker applied an exploit that was incompatible with the
vulnerability; or (3) a hacker failed to trigger the vulner-
ability in the application. We identified 14 such mistakes
made by five hackers in seven challenges. All these mistakes
were abandoned as hackers had to re-think their approach.
Vulnerabilities, where strategy errors were involved, include
stack buffer overflows with ret2libc attack, canary bypass,
unsafe unlink, format string with GOT overwrite, arbitrary
memory write, and out-of-bound memory access.

Most strategy flaws (n = 10) fall into the first sub-
category, where hackers failed to create payload. Some-
times, hackers tried to achieve arbitrary code execution by
leveraging “magic gadgets” (instruction sequences in libc

that will spawn a shell when executing) but some attempts
were unsuccessful due to unmet conditions, and hackers had
to reconsider the design of their exploits. In another case,
the constructed payload exceeded the allowed size limit
for a buffer overwrite. Other examples include corrupting
a pointer in GOT when returning to the main function,
creating a payload with the pointer in a non-writable seg-
ment, constructing a payload that reads pointers as strings
but not accounting for the terminating null byte, and over-
complicating the solution by implementing a complex ROP
chain.

Incompatibility issues occurred when hackers encoun-
tered a challenging task and did not have a clear direction
for exploitation. In such situations, one approach was to
research the topic off-stream and attempt to implement ideas
they found. For example, while analyzing a buffer overflow
with a canary bypass video, we encountered two cases
where a hacker implemented techniques that either required
the canary to be constant or granted data disclosure (leak)
but not memory modification (write) capability. In another
situation, a hacker was planning a partial pointer overwrite
but had to abandon the idea due to a double-word write
operation constraint.

Finally, we observed one case of selecting a faulty
trigger for an exploit when a hacker had to reject the original
plan of using printf to trigger malloc and used scanf
instead. Hackers spent 9 minutes on average but up to 23
minutes total on these types of mistakes.

4.4. Tooling

Any mistakes associated with the wrong usage of tools
like disassemblers, decompilers, or debuggers fell into the
Tooling category. We identified 12 such mistakes and orga-
nized them into four sub-types.

Five mistakes occurred due to issuing incorrect instruc-
tions or failing to pass proper input to the binary in a
debugger or disassembler, causing tool-specific errors or
unintended output. Examples of utilizing wrong commands
in GDB include setting follow-exec-mode instead of
follow-fork-mode, using qwords instead of bytes for
indexing, and return instead of finish. One hacker
misread help instructions in Radare and had to quit out of
the disassembler to avoid data loss. We also observed one
case of misinterpretation of a string value during the reverse
engineering of an assembly code.

Four mistakes involved misconfigurations and missteps
in process control while using GDB. One of them related to
an attempt to attach GDB to the process running under the
context of a different user instead of creating a local copy
first, leading to permission-related issues. Figure 5 shows
this issue as a commented code in line 3. Two mistakes were
associated with GDB following the wrong process due to
hackers forgetting to set the corresponding option. Finally,
one of the hackers attempted to run the wrong program in a
debugger instead of running in fork mode as a child process.

Debugging oversight occurred twice while hackers were
using GDB. The first time, a hacker looked for heap ad-

Figure 4: Distribution of phase duration for different types of issues. The x-axis labels denote the time difference
between two points: Orig - origination/manifestation; Man - manifestation/detection; Det - detection/supposition; Sup -
supposition/implementation; Impl - implementation/mitigation. The y-axis represents time in logarithmic scale.

1 import pwn
2 ...
3 # p = pwn.process(’/problems/problem1/vuln’)
4 p = pwn.process(’./vuln’)
5 ...

Figure 5: Originally did not use the local copy of the binary
when trying to attach GDB.

dresses in memory before making an allocation; in the
second case, a hacker attempted to read GOT entries in the
read-write segment of code in a binary compiled with full
RELRO. We noticed one issue related to setting a breakpoint
in GDB on an instruction that was already executed, which
prevented backtrace and continuation of analysis for 4.5
minutes. In general, Tooling mistakes were resolved quickly,
with an average time of 2 minutes. The highest time loss
(5 minutes) happened during solving a permission-related
problem.

4.5. Technical Issues

Occasionally, hackers had to address technical issues
that prevented further activities until resolved or abandoned.
These issues cannot be characterized as mistakes. We iden-
tified seven such issues caused by complications with soft-
ware, such as pwntools, the pty Python module, and the
pwndbg GDB extension; missing dependencies for running
32-bit executables; and random program behaviors. Four
issues were addressed by either implementing an alternative
approach, installing missing dependencies, or testing varied
assumptions. We could identify only detection, supposition,
and implementation timeframes for those instances. The
remaining three issues were abandoned. In two instances
(pwntools did not work on the server, missing libraries), the
streamer was able to, quickly, in under two minutes, find
an alternative solution and continue. In other cases, hackers
successfully installed required dependencies and modified
code to control the process, spending 7 minutes on average.
Complications with pwndbg caused one hacker to lose 20
minutes while trying to research the problem and patch the
source code before he abandoned the issue because of time

considerations. Another hacker spent more than an hour and
a half “fighting with the weird implementation of pseudo pty
inside Python libraries.” As he confessed later:

I didn’t expect master pipe to be interpreting any termi-
nal sequences. Why would it? ... but it seems that library
did it, and it changed what we sent to the process to
gibberish... and we spotted that only after doing the tee
into a file, ... and then we had to rewrite it to use low-
level pseudo terminal implementation... I learned... not
to trust the pty library, because it does weird stuff (H4)

5. Cost-Impact Analysis of Mistakes

To better understand how the time costs of mistakes are
distributed across their lifetime, we calculated the duration
of phases occurring between each pair of timeframes in our
mistake anatomy framework. We analyzed the distributions
of these phases with respect to the issue type and how
significant the cost of each phase was during the process
of resolving issues. We discuss the case of mistake aban-
donment (i.e., when hackers give up on resolving an issue)
in Appendix A.2. Figure 4 shows the distribution of phase
durations for different categories of issues. Using log time
on a vertical scale allows for uniform plotting across all
graphs, highlighting that the most significant costs were
accrued during three specific phases: origination, debugging,
and fixing. Below, we describe each phase separately and
compare them across various types.
Origination/manifestation. This phase represents the time
it takes for a mistake to manifest or become visible on the
screen. We were able to notice the effects of mistakes after
2 minutes on average, however, the median time was only
24 seconds, indicating a positively skewed distribution with
relatively few high values. Maximum duration times varied
for different types, reaching 15 and 49 minutes (98% and
95% of the total duration time, respectively) for Program-
ming and Implementation types. Elevated values could be at-
tributed to two scenarios: a) mistakes originating early in the
process of writing the exploit and remaining unnoticed until
testing; b) errors involving multiple compounded mistakes,
some of which surfaced and required resolution before the
original mistake could manifest. Frequently, both scenarios
coexisted.

Manifestation/detection. This phase indicates the time re-
quired for a hacker to detect a mistake. This occurrence
typically took place shortly after a mistake appeared on the
screen, with both the average and median times estimated
in the order of several seconds. In one instance, this phase
lasted 4.5 minutes (29% of the total time). The hacker
constructed a payload for the write using the GOT address
of the system instead of PLT but was not immediately able
to recognize the issue as the binary displayed the expected
behavior (segmentation fault) during interim testing. We
could not estimate this phase in cases of the wrong approach
where hackers realized their mistake at the conceptual level.

Detection/supposition. This time interval represents how
soon it takes for a hacker to start making assumptions after
detecting a mistake. Similar to detection, this phase was very
short and took only several seconds on average, as streamers
usually began investigating the reasons shortly after they had
detected the mistake.

Supposition/implementation. This is a debugging phase
during which hackers attempt to understand the problem
and test their hypotheses. It lasted 3.3 min on average, with
a median time of 1 minute, indicating a positively skewed
distribution with a few outliers, including a maximum value
of 1 hour 25 minutes spent on resolving an issue with
the Python pty library. The phase lasted the longest (4
minutes on average) for Implementation mistakes, followed
by Strategy (1.5 minutes). For Tooling and Programming
types, it took approximately 1 minute. Technical Issues are
characterized by a median time of 1 minute but show a high
average (25 minutes) due to an outlier. There were only three
instances for strategy and four for technical problems where
we were able to estimate this phase due to a high number
of mistakes abandoned at this stage.

Implementation/mitigation. During this phase, hackers at-
tempted fixing the mistake. This phase lasted 2.3 minutes on
average, with a maximum time of 40 minutes where a hacker
attempted to implement a solution “on the fly” neglecting to
understand the issue first. Similar to the debugging phase,
the duration was the longest for Implementation mistakes
with an average time of 3.5 minutes. The distinction between
supposition and implementation phases is blurred as hackers
frequently endeavored to implement ideas that did not suc-
ceed, leading them to reassess the problem and engage in
an iterative loop of understanding and experimentation. Fig-
ures 6 and 7 show distributions of time required to resolve
different mistake types and subtypes correspondingly.

Figure 8 demonstrates the percentage of time lost on
mistakes and technical problems in all challenges. Time
costs are sorted in increasing order with the type of vul-
nerability shown on the left and the hacker ID on the right
of the bars. Time losses vary in the range from 3 to 75%
with the average value of 40%. In 30% of all cases (n =
9), the time lost accounts for more than 50% of the total
challenge duration.

Figure 6: Distributions of resolving times for different types
of issues.

Figure 7: Distributions of resolving times for issue subtypes.

Figure 8: Percentage of time lost on rectifying issues. Time
spent on resolving mistakes and technical issues (orange)
is shown as a percentage of the total time spent on the
challenge (orange + blue).

6. Behind Mistakes—Why Making Mistakes?

According to cognitive psychologists Rasmussen [32]
and Reason [35], human errors result from normal cognitive
processes. While technical analysis helped uncover hacker
mistakes and their root causes, in this section we delve into
the non-technical reasons behind those mistakes along with
debugging and avoiding mistakes approaches.

6.1. Making Mistakes

We identified various non-technical factors contributing
to mistakes through qualitative analysis of video transcripts.
Six hackers (H1-4, H6, H7) made mistakes due to unin-
tentional overlook or forgetting critical elements. These
mistakes included missing gadgets while implementing a
ROP chain, forgetting to assemble shellcode, failing to
meet argument requirements, and neglecting to define or
call variables or functions. Such occurrences are typical for
Programming and Implementation types of errors. Often,
hackers admitted these lapses:

I forgot to do buf2 plus equals, that’s gonna happen a
lot with buf... this is a horrible way of ROP building,
by the way, and it leads to mistakes, like that one right
there (H7)

Unawareness of approach was usually associated with the
Strategy type of mistakes. Four hackers (H2, H5, H7, H10)
struggled with identifying the correct strategy to solve a
challenge. For example, before attempting to leak the canary
value, H2 confessed:

I’ve no idea if this is going to lead anywhere.
We observed similar behavior during the implementation
of memory write operations if a hacker (H5, H10) was
misunderstanding pointer operations or payload constraints.

We also noticed three cases of over-complicating the
solution (H6, H7, H10). For example, H7 admitted:

I made this way more complicated than it has to be,
way more complicated.

Inconsistent hand included “fat-fingering” mistakes (essen-
tially, typographical errors) (H6), copy/paste (H6, H8) or
user input errors (H9). Some Tooling, Programming, and
Implementation mistakes occurred due to the lack of focus
or attention, for example, during reading documentation
files (H4, H11), interpreting assembly code (H8), or writing
an exploit (H1, H5, H7). In some instances, hackers (H10,
H11) did not know how to use tools properly and confused
themselves using the wrong commands. One hacker (H4)
experienced challenges switching from Python 2 to Python
3, while the other (H11) did not have practical knowledge of
pwntools and had to frequently consult the documentation.

Two hackers (H5, H8) attributed a possibility of mistake
occurrence due to fatigue or exhaustion resulting from the
time-consuming exploitation process, mentioning lack of
sleep. H8 stated after nearly three hours of work:

I’m officially at the point in the challenge where I’ve
been looking at it long enough that I’m starting to make
stupid mistakes

6.2. Fixing Mistakes

During debugging mistakes, we observed all hackers
setting expectations of a certain outcome:

I hope this works like this because it should work like
this (H4)

If the anticipated outcome was not met, confusion arose,
leading hackers to generate and test multiple hypotheses
— either mentally or through debuggers — to comprehend
the issue. We observed this behavior for all eleven hackers.
Besides adding print statements to the code, hackers
often employed standard exploit debugging techniques,
for example, sought actions with observable side effects
(H2, H4, H8), changed code patterns to obtain information
(H4), attempted jumps to subsequent function instructions
(H4). During the debugging phase all hackers, except one,
extensively used online resources for guidance, mostly con-
ducting searches in Google, reading source code for library
functions, or viewing manual pages for certain commands in
the Linux terminal. Trial and error became more prevalent
during the implementation phase, especially when initial
fixes proved ineffective. We noticed that all hackers relied
on trial and error and were merely brute-forcing or itera-
tively adjusting strategies until they achieved a successful
resolution.

Often, while constructing an exploit, hackers (H1, H2,
H4-7) anticipated that it would not work flawlessly right
away and foresaw issues with its functionality:

We’re probably going to corrupt RSP, aren’t we? (H7)
I think I missed something in the ROP chain (H1)

Some hackers were building and testing the code incremen-
tally, mitigating issues as they emerged. H2 recommended
to his audience:

This is why you develop things piecemeal, because you
make tiny mistakes...

6.3. Avoiding Mistakes

Some hackers (H1, H2, H4, H8, H9) attempted to min-
imize the risk of making mistakes and avoid confusion by
being organized and exercising good command line and
coding practices. For example, H8 shared:

I always put my compile and run commands on the same
line, so that I don’t make that mistake

Additionally, several hackers (H4, H8) future-proofed their
code by considering potential changes in the system and
environment, and one hacker (H1) admitted the need to use
a linter after spending some time on fixing typographical
errors in exploit code.

7. Hacker Dynamics—Who Made Mistakes?

Successful hacking not only relies on technical knowl-
edge but also strategic finesse. Our hackers exhibited mul-
tifaceted behavior as they delved into the complex and
time-consuming exploitation process. Next, we discuss the

hackers’ efficiency-increasing approaches, their perceptions
of tools used during exploitation, and the dynamics of
online interactions to highlight their deliberate choices, their
adaptive approaches, and the overall collaborative nature of
problem-solving enabled via streaming.

7.1. Efficiency Increasing Strategies

We identified several optimization patterns employed by
the hackers, especially during the debugging phase (Sec-
tion 5) to maximize their efficiency. H4, H5, H6, and H8
attempted to avoid time-intensive and unnecessary actions.
Depending on the task, they tried to brute-force solutions,
automate repetitive tasks, and leverage custom scripts to
expedite exploitation. Notably, several hackers avoided a
sub-optimal approach to exploit writing (H7), excessive
reusability of reference code (H6), or inefficient algorithms
(H5), seeking a “nicer” and “more intelligent” way.

We noticed several instances when hackers were iden-
tifying and filtering out not-so-relevant information for
their task (H1, H4-8). In addition, six hackers relied on
past experience by reusing templates or previously written
code (H2), looking for commonalities with the challenges
they had already solved (H4, H5), and using tricks that they
learned from CTFs to resolve problems (H1, H8). A few
hackers recounted their experience with occasional flaws
and misconfigurations of CTF setups that helped them solve
challenges in the past and imparted insights about tactics and
techniques they employed during CTF competitions (H4,
H8). Multiple instances occurred where hackers retrospec-
tively recognized the potential improvements they could
have incorporated into their exploit by using appropriate
tools to increase efficiency (H6-8). H8 recounted:

I remember seeing the pwntools one [pwntools option], and
I’m like: Wow! I wasted a lot of time on that challenge!

Six hackers explored shortcuts or novel ideas in an
attempt to optimize the exploitation process:

Let’s just try this for speed... How did that work? I’m not
gonna question that (H5)

7.2. Navigating Tools and Tactics

In addition to using standard tools, seven hackers (H1-6,
H8) opted for customized solutions or developed their own
applications, helping them to craft or debug exploits. Several
demonstrated the capability to use a variety of techniques
to perform a single task, for example, to check an address
or calculate a position on the stack. Nine hackers relied on
the pwntools library for creating their exploits:

[pwntools] should be in any hacker’s arsenal because it makes
prototyping things so much faster (H8)
They have all of this magic stuff baked in, it’s beautiful! (H6)
It [pwntools] just gives you so many nice little bits and pieces
for running binaries and interacting with them (H7)

To perform ROP attacks to bypass security mecha-
nisms, e.g., non-executable stack (NX), hackers often used
command-line tools, like One Gadget, to search binaries for

usable instructions. Despite the high usability of these tools,
H1 mentioned issues with One Gadget as well as the bugs
in pwntools that he could not explain.

Hackers unanimously used GDB (GNU Debugger
framework) extensions, such as pwndbg, peda, and gef,
except streams created in 2014-2015 and cases where the
hacker had to employ plain GDB on the server. Some
hackers explicitly stated their preferences:

I find GDB to be pretty unusable without peda or an
extension of some kind (H8)
GDB’s API is so bad... It’s good that I have pwndbg (H1)

Apart from problems with GDB, some hackers criticized
the cryptic and confusing GLIBC source code (H8) and
the lack of clarity in Radare documentation (H11). The
shortcomings within multiple tools impeded the hackers’
efficiency in the exploitation process.

7.3. Hackers’ Streaming Interactions

Collaborators and individualists. Broadly, we observed
that hackers had two online behaviors while streaming,
namely collaborators (n = 4) and individualists (n = 7).
Collaborative hackers considered the streaming event as an
opportunity to socialize and engage with the audience. We
noted instances (n = 18) where hackers received advice that
helped them resolve their mistakes or saved considerable
debugging time, underscoring collaboration as a potent tool
for refining and enhancing the efficiency of the exploitation
process. On the other hand, hackers with an individualist
mindset used their stream time to focus on solving the
challenge, occasionally attending to the streaming platform’s
chat feature to answer viewer questions or ask for help. Only
three hackers didn’t pay any attention to viewers.
Educators. Nine hackers stood out as educators by an-
swering questions, drawing and demonstrating examples,
or explaining concepts. At times (H2, H6, H8), educating
others helped hackers realize mistakes or clarify strategy, as
H8 stated:

I don’t think that would work, now that I’m talking it through

Some hackers (H3, H5, H6-8) demonstrated specific
behaviors in response to audience demands. For example,
H3 realized the beginner level of his viewers and attempted
to explain complex concepts in “a very simple way.” Some
hackers offered clarifications to ensure the audience under-
stood their actions. H8 exemplified these streaming de-
mands by stating:

I’m trying to show good practice since I am showing off to the
public

Learning on-the-go. On the other hand, hackers (H2, H4,
H6, H8) often admitted a lack of knowledge or experience
but at the same time demonstrated curiosity and persever-
ance and took time to learn new things during the stream
and share knowledge with the audience. H2 shared:

...this is part of why I wanted to do this video series. It’s very
easy to read some of these walkthroughs and just think that,
like, these people are brilliant, they just do X, Y, and Z, and
they get the flag, but oftentimes you have a lot of false starts

down a lot of paths, but in the meantime, you’re learning a lot
of interesting things

7.4. Emotions and Attitudes

Ten hackers displayed a certain degree of frustration
or annoyance, usually during the debugging phase of the
mistake-solving process. We identified five primary causes
of frustration: repeatedly misreading binary code due to
distractions (multitasking), grappling with “weird” program
behavior, frequent occurrences of typographical errors or
minor mistakes, the necessity for extensive debugging, or
simply misunderstanding binary and consistently mistaking
the approach. The level of irritation usually increased as the
problem persisted, and a hacker felt an absence of progress.
Depending on the hacker’s style, frustration could manifest
as a negative self-talk (H6-10).

Three hackers originally underestimated the difficulty
of a challenge, later admitting they were wrong. As H5
stated:

Well, you think this problem is gonna be easy and it so isn’t

At times, to circumvent challenging parts or to avoid
time-consuming tasks, hackers relied on luck.

Let’s just try the magic gadget remotely, maybe we’ll get lucky
(H8)
[...] just cross our fingers and hope we get a string in the
memory (H7)
I just put tons of crap on the stack and hoped that we get a
zero there and we did (H5)

8. Discussion and Recommendations

In this section, we discuss the findings of our research,
their alignment with real-world scenarios, and the broader
implications they hold. Additionally, deriving inspiration
from both our findings and the study of researchers’ hack-
ing experiences, we advocate for specific enhancements in
hacking strategy, tools, and educational materials.
Leveraging YouTube for cybersecurity research. In our
study, we collected and analyzed a unique dataset of
YouTube videos to investigate mistakes made by hackers
during the hacking process. This approach offered a visual
representation of the entire exploitation process, enabling
a thorough examination of hackers’ strategies, tools, and
decision-making in their natural environment, without arti-
ficial constraints. Remote observation of hackers’ activities
via screencasts eliminates geographical barriers, facilitating
data collection and analysis. Additionally, YouTube videos
afford flexibility in analysis, enabling researchers to review,
pause, rewind, and annotate recordings as needed. Finally,
YouTube data serves as a rich source of publicly available
artifacts. By showcasing the value of this methodology,
we hope to inspire further exploration of YouTube data in
cybersecurity research endeavors.
Take the time for exploit strategization. Second only to
Implementation mistakes, Strategy mistakes had a significant

impact on total exploit time (Section 4). Our measurements
of these mistakes were conservative since we couldn’t mea-
sure off-screen and thinking time. We believe this indicates
that strategy could have an even bigger impact on hacking
time than measured. With this in mind, we find that dedi-
cating time to craft an efficient and accurate strategy can be
more beneficial than patching together an incomplete one.

Additionally, we found that inefficiencies in hacking pro-
cesses arise from rushing without a detailed understanding
of a problem. This lack of understanding can be caused or
exacerbated by distractions like stream chat, overall fatigue,
failure to automate tasks, and overall strategy unawareness.
Software engineering similarities. We found that phases
of exploit creation had conceptual and practical overlaps
with general software engineering. Our cost-impact analysis
(Section 5) reveals that, on average, hackers dedicate 40%
of their time to rectifying mistakes within their exploits,
with some cases reaching up to 75%. These findings align
with works in the area of software engineering, where the
majority of engineers dedicate a similar amount of time to
debugging [17, 30].

IDEs are very useful for identifying and fixing pro-
gramming mistakes like syntax errors in general software
development. However, in exploit creation, their benefits
might not be as pronounced as the size of code that an
exploit requires is usually much lesser than that of a soft-
ware engineering project. This is reflected in the fact that
Programming errors (such as runtime exceptions or syntax
errors) while being the second most frequent mistake in our
dataset, were fixed faster than any other mistake type.
Memory-focused tool improvements. In addition to mem-
ory operations being the most time-consuming mistakes
(Section 4), debugging was the most time-consuming phase
of fixing those mistakes (Section 5). Fixing memory-related
mistakes required intricate tooling and additions to base
debuggers to make root-cause analysis easier. We find that
these tools still lack meaningful ways to visualize and
inform hackers of the layout and state of memory. Memory-
focused improvements in both debuggers and exploitation
libraries, like pwntools, can make mitigating and solving
these mistakes easier.
Improvements in education design. We found that exploit
implementation mistakes, notably errors during writing or
leaking memory, significantly impacted the efficiency of the
hacking process, taking the longest time to rectify, followed
by errors in strategy selection (Section 4). Mistakes related
to programming and tool usage were addressed quickly
and presented less concern. Our finding aligns with recent
studies [6, 22], which highlighted that memory management
programming mistakes were the most problematic among
undergraduate computer science students. We believe that
greater emphasis should be placed on addressing this chal-
lenging aspect when devising the curriculum for security
courses at universities. In particular, it is crucial to im-
prove understanding of how software interacts with memory
by focusing on concepts such as the memory layout of
a running executable and processes involved in memory

access to retrieve and store data. Another important aspect
involves strengthening comprehension of pointer operations
in memory-unsafe languages such as C/C++, as these op-
erations are fundamental to memory manipulation and ex-
ploitation.
Future directions. In our study, we applied a manual
approach to investigate and analyze mistakes intrinsic to
the hacking process. While this method offers in-depth
insights, its effectiveness can be significantly enhanced by
incorporating AI techniques. Utilizing AI algorithms and
machine learning can automate mistake detection and iden-
tification, offering scalability and enhancing analysis effi-
ciency. Future work could explore the disparities between
experts and novices in comprehending mistakes and im-
proving educational methods and training programs for more
effective learning and performance-enhancing strategies. We
encourage other researchers to explore these avenues for a
deeper understanding of expertise development and mistake
interpretation in cybersecurity tasks and across disciplines.

9. Conclusions

In our work, we aimed to investigate human mistakes
in the vulnerability discovery process. We leveraged 30
YouTube screencasts featuring 11 hackers addressing binary
exploitation challenges. Utilizing YouTube data allowed us
to capture and annotate a comprehensive course of actions of
hackers in terms of mistakes they made and technical prob-
lems they encountered while solving challenges. Through
detailed technical and qualitative analyses, we examined the
origins, types, and impacts of these mistakes. We found that
Implementation (memory operations) and Strategy are the
most time-consuming types of mistakes. After noticing a
mistake, hackers spend most of their time debugging and
fixing it. Even though Technical Issues were rare (6% of
all problems), they could have a significant impact on hack-
ers’ efficiency. Time lost on rectifying mistakes averaged
40% of total hacking time. Our findings have implications
for shaping educational programs, refining security analyst
approaches, and enhancing tool development practices.

Acknowledgment

We thank our anonymous shepherd and reviewers for
their constructive feedback that helped us to improve our
work. Additionally, we appreciate the creators who shared
their hacking streams on YouTube, which provided us with
valuable data for this research.

This work is sponsored by and related to the Department
of Navy Award N00014-23-1-2563 issued by the Office of
Naval Research (ONR). This work has also received funding
from the Department of Defense Grant No. H98230-23-
C-0270 and National Science Foundation (NSF) Awards
No. 2232911, 1663651, 2247954, 2146568, and 2232915.
The material is based upon work supported in part by
the Defense Advanced Research Projects Agency (DARPA)
under Agreement FA8750-19-C-0003, and work supported

by DARPA and Naval Information Warfare Center Pacific
(NIWC Pacific) under Contract N66001-22-C-4026. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of ONR, DARPA, or
NIWC Pacific.

References

[1] OverTheWire: Wargames. https://overthewire.org/wargames/. (Ac-
cessed on 12/6/2023).

[2] picoCTF. https://picoctf.org/. (Accessed on 12/6/2023).
[3] pwnable.kr. https://pwnable.kr/. (Accessed on 12/6/2023).
[4] Security creators. https://securitycreators.video/. Accessed:

10/6/2023.
[5] Google Vulnerability Reward Program, 2023. https:

//bughunters.google.com/about/rules/6625378258649088/
google-and-alphabet-vulnerability-reward-program-vrp-rules.

[6] Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soo-
sai Raj, and Rahul Chatterjee. Towards finding the missing pieces to
teach secure programming skills to students. In Proceedings of the
54th ACM Technical Symposium on Computer Science Education V.
1, pages 973–979, 2023.

[7] Aitor Apaolaza, Simon Harper, and Caroline Jay. Understanding
users in the wild. In Proceedings of the 10th international cross-
disciplinary conference on web accessibility, pages 1–4, 2013.

[8] Victoria A Banks, Katherine L Plant, and Neville A Stanton. Leaps
and shunts: designing pilot decision aids on the flight deck using
rasmussen’s ladder. Contemporary ergonomics and human factors,
2020.

[9] Adam R Bryant. Understanding how reverse engineers make sense of
programs from assembly language representations. Air Force Institute
of Technology, 2012.

[10] Kevin Burk, Fabio Pagani, Christopher Kruegel, and Giovanni Vigna.
Decomperson: How humans decompile and what we can learn from
it. In 31st USENIX Security Symposium (USENIX Security 22), pages
2765–2782, 2022.

[11] Sloane C Burke and Shonna L Snyder. Youtube: An innovative
learning resource for college health education courses. International
Electronic Journal of Health Education, 11:39–46, 2008.

[12] John W Coffey et al. Ameliorating sources of human error in
cybersecurity: technological and human-centered approaches. In The
8th International Multi-Conference on Complexity, Informatics, and
Cybernetics, Pensacola, pages 85–88, 2017.

[13] david942j. OneGadget. https://github.com/david942j/one gadget/
blob/master/README.tpl.md. (Accessed on 12/6/2023).

[14] Kerstin Duschl, Martin Obermeier, and Birgit Vogel-Heuser. An
experimental study on uml modeling errors and their causes in
the education of model driven plc programming. In 2014 IEEE
Global Engineering Education Conference (EDUCON), pages 119–
128. IEEE, 2014.

[15] David Embrey. Understanding human behaviour and error. Human
Reliability Associates, 1(2005):1–10, 2005.

[16] Giovanni George, Jeremiah Kotey, Megan Ripley, Kazi Zakia Sultana,
and Zadia Codabux. A preliminary study on common programming
mistakes that lead to buffer overflow vulnerability. In 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMP-
SAC), pages 1375–1380. IEEE, 2021.

[17] Brent Hailpern and Padmanabhan Santhanam. Software debugging,
testing, and verification. IBM Systems Journal, 41(1):4–12, 2002.

[18] Robert L Helmreich. Managing human error in aviation. Scientific
American, 276(5):62–67, 1997.

[19] Kenji Itoh, Noriyuki Yamamoto, and Henning Boje Andersen. As-
sessing task complexity by use of rasmussen’s decision ladder: Model
and its application to recovery from healthcare adverse event. In
Conference Proceedings Actes du congrès, page 436, 2017.

[20] Anthony R Jansen, Alan F Blackwell, and Kim Marriott. A tool
for tracking visual attention: The restricted focus viewer. Behavior
research methods, instruments, & computers, 35(1):57–69, 2003.

https://overthewire.org/wargames/
https://picoctf.org/
https://pwnable.kr/
https://securitycreators.video/
https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules
https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules
https://bughunters.google.com/about/rules/6625378258649088/google-and-alphabet-vulnerability-reward-program-vrp-rules
https://github.com/david942j/one_gadget/blob/master/README.tpl.md
https://github.com/david942j/one_gadget/blob/master/README.tpl.md

[21] Daniel P Jenkins, Malcolm Boyd, and Chris Langley. Using the
decision ladder to reach a better design. In Ergonomics Society
Annual Conference, 2016.

[22] Monika Kaczorowska. Analysis of typical programming mistakes
made by first and second year it students. Journal of Computer
Sciences Institute, 15, 2020.

[23] Jeremy Kirk. A better reason not to use huawei routers: Code from
the ‘90s.

[24] Gary A Klein. Sources of power: How people make decisions. MIT
press, 2017.

[25] LiveOverflow. Youtube security scene. Phrack magazine,
10(70):0x0f, 2021.

[26] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. Code,
camera, action: How software developers document and share pro-
gram knowledge using youtube. In 2015 IEEE 23rd International
Conference on Program Comprehension, pages 104–114. IEEE, 2015.

[27] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Da-
vide Balzarotti. {RE-Mind}: a first look inside the mind of a reverse
engineer. In 31st USENIX Security Symposium (USENIX Security
22), pages 2727–2745, 2022.

[28] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reliability
and inter-rater reliability in qualitative research: Norms and guidelines
for CSCW and HCI practice. Proceedings of the ACM on human-
computer interaction, 3(CSCW):1–23, 2019.

[29] Neelam Naikar. A comparison of the decision ladder template and the
recognition-primed decision model. Defence Science and Technology
Organisation Fishermans Bend, Australia, 2010.

[30] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. Studying the advancement in debugging practice of
professional software developers. Software Quality Journal, 25:83–
110, 2017.

[31] Tommy Pollock. Reducing human error in cyber security using the
human factors analysis classification system (hfacs). 2017.

[32] Jens Rasmussen. Human data processor as a system component bits
and pieces of a model. 1974.

[33] Jens Rasmussen. Outlines of a hybrid model of the process plant
operator. In Monitoring behavior and supervisory control, pages 371–
383. Springer, 1976.

[34] Jens Rasmussen. Information processing and human-machine inter-
action. An approach to cognitive engineering. North-Holland, 1987.

[35] James Reason. Human error. Cambridge university press, 1990.
[36] Hendrig Sellik, Onno van Paridon, Georgios Gousios, and Maurı́cio

Aniche. Learning off-by-one mistakes: An empirical study. In
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pages 58–67. IEEE, 2021.

[37] Rebecca Smith and Scott Rixner. The error landscape: Characterizing
the mistakes of novice programmers. In Proceedings of the 50th ACM
technical symposium on computer science education, pages 538–544,
2019.

[38] Chareen Snelson. Youtube across the disciplines: A review of the
literature. MERLOT Journal of Online learning and teaching, 2011.

[39] Anselm Strauss and Juliet Corbin. Basics of qualitative research.
Sage publications, 1990.

[40] David R Thomas. A general inductive approach for qualitative data
analysis. 2003.

[41] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou,
Michelle L Mazurek, and Michael Hicks. Understanding security
mistakes developers make: Qualitative analysis from build it, break
it, fix it. In 29th USENIX Security Symposium (USENIX Security 20),
pages 109–126, 2020.

[42] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster,
and Michelle L Mazurek. An observational investigation of re-
verse {Engineers’} processes. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1875–1892, 2020.

[43] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and
Michelle Mazurek. Hackers vs. testers: A comparison of software
vulnerability discovery processes. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 374–391. IEEE, 2018.

[44] Laurie A Werner and Charles E Frank. A new look at security edu-
cation: Youtube as youtool. Information Systems Education Journal,
8(34):n34, 2010.

[45] David Woods, Leila J Johannesen, Richard I Cook, and Nadine B
Sarter. Behind human error: Cognitive systems, computers, and
hindsight. 1994.

Appendix A.

A.1. Digging Into Implementation Mistakes

Leak. 20% of the Implementation mistakes occurred while
hackers attempted to read a memory value. Hackers were
able to detect these issues by either obtaining the wrong
output or observing a segmentation fault (SIGSEGV) in a
debugger. The root causes of these mistakes included using
a wrong format string specifier, miscalculating the offset
to leak a library address, or computing an address from
leaked values incorrectly. Figure 9 shows an example of
an incorrect computation of the address of system from
leaks where the hacker adds values instead of subtracting
the offset from the write address. In other cases hackers
were using erroneous exploit logic while performing pointer
operations for leak such as reading an address from the GOT
table or returning a value from a function.

The mistakes took from 1 up to 21 minutes to resolve
with the median time of 7 minutes.

1 ...
2 write_offset = XXXXXX
3 p = pwn.process(’./vuln’)
4 p.recvuntil(’write: ’)
5 write_addr = int(p.recvline().strip(), 16)
6 system_addr = write_offset + write_addr
7 bin_sh_addr =
8 int(p.recvline().split(’ ’)[1].strip(), 16)
9 ...

Figure 9: incorrectly computed the address of system from
the leaks.
Write what. A significant portion of all Implementation
mistakes (72%) encountered during exploit writing occurred
while crafting payloads to write into memory (so-called
write-what-where) where streamers had to realize
modification of memory at a controlled location.

We recognized 18 problems that hackers experienced
while writing a specific value into memory with eight of
them stemming from mistakes in payload. Two mistakes
were related to failing function argument requirements by
passing wrong values in the payload. One example of such
a mistake where a hacker forgot to assemble the shellcode
and passed it as a text is shown in Figure 10. One person
forgot to account for requisite conditions before sending the
exploit, and the other attempted to call system with a
pointer instead of a string containing “sh”, which caused
the program termination. Two payloads did not meet the
necessary constraints to exploit. In the first case hacker
introduced illegal characters in the payload, that prevented
the exploit from working properly. The other case pertains to
the failure to set a specific register value when manipulating
control flow. The last two mistakes were related to using the

wrong heap object to call a function pointer and to write a
payload in use-after-free challenges.

1 ...
2 payload = pwn.shellcraft.amd64.linux.sh()
3 p.recvuntil(’>’)
4 p.sendline(payload)
5 ...

Figure 10: forgot to compile the assembly instructions to
shellcode.

Three hackers experienced program failure as the result
of a prohibited overwrite. In two cases, stack cookie and
stdout were overwritten with illegal values. In the third
case, the streamer overwrote a pointer with a constant lead-
ing to a segmentation fault after dereferencing. Figure 11
shows this mistake.

1 list_items(’yA’ + p32(0x1773)
2 + p32(elf.got[’puts’]) + p32(0) + p32(0))

Figure 11: overwrote a pointer with a constant, the program
crashes when trying to dereference it.

Three mistakes occurred due to the use of the wrong
address in the payload. One hacker misunderstood the write-
what-where condition and used the GOT address of system
instead of the PLT, but proceeded with writing and testing
other functionality of exploit code, and only noticed the
error much later when he was explaining the approach to
chat. The other hacker committed a similar mistake returning
to the address in the GOT where it should have been the
PLT, which resulted in a segmentation fault. In the third
case, the hacker mistook the address of main, but rectified
that by investigating output in the debugger.

Two people committed mistakes while constructing the
ROP chain by forgetting to include certain gadgets.

We also identified three cases of stack misalignment
issues. Two of them occurred as a result of running exploit
and were corrected by streamers within 1-2 minutes. More-
over, one of the hackers initially confirmed misalignment
and attempted to correct it but failed. The third case was
secondary to the wrong function analysis (Miscellaneous).

The median solving time for this type of mistakes was 7
minutes, but two issues took more than 50 minutes to solve
and hackers spent a significant amount of this time trying
to understand the problem.

Write where. 18 issues occurred due to writing to the wrong
location in memory with 13 cases of mistakes in the offset
to overwrite a pointer. Mistakes included using incorrect
pointer operations (six cases) and miscalculating the size
of the offset (three cases). The rest were unique scenarios
of adding an offset to the wrong gadget in the ROP chain,
calculating the offset based on the wrong function address,
miscalculating a pointer position on the stack by using a
memory address of a variable instead of a pointer to this
address, and not accounting for the size of the writable

area. Notably, the last mistake occurred at the beginning
of writing an exploit and did not appear until the very end,
thus lasting more than 50 minutes from origin to mitigation.

Figure 12 demonstrates a mistake in the offset where the
author overwrites saved eip register instead of the saved
ebp to perform a stack pivot.

1 ...
2 saved_ebp = stack_leak - 28
3 target_on_heap = heap_leak + 24 + 8 + 4 + 4
4 p += p32(saved_ebp)
5 p += p32(target_on_heap)
6 # Main’s new saved EIP
7 p += p32(0xXXXXXXXX)
8 # Main’s new saved EBP
9 p += ’CCCC’
10 ...

Figure 12: overwrote saved EIP instead of the saved EBP to
perform a stack pivot (lines 4 and 5 are in the wrong order).

We identified three mistakes related to using the wrong
address of overwrite. In one case, a hacker attempted to
overwrite a pointer in the PLT instead of the GOT, which
crashed the program. In the other, he pinpointed an address
in the PLT while demonstrating to the audience that the
GOT table was writable. In the third instance, a streamer
mistook the address of a function he tried to overwrite. An
example of a wrong overwrite is shown in Figure 13.

Two people solving the same challenge with out-of-
bounds memory write vulnerability made mistakes by using
incorrect pointer shift operation and failing to overwrite at
the proper location.

This type of mistakes covers a wide range of time from
1 to 52 minutes averaging to 13 minutes per mistake. The
median time to resolve was 7 minutes.

gdb-pedas$ x/16wx 0xXXXX3d0
0xXXXX3d0 <puts@plt>: ...
0xXXXX3e0 <system@plt>: ...
...
$ nc 2018shell.picoctf.com XXXX
I’ll let you write one 4 byte value to memory.
Where would you like to write this 4 byte value?
0xXXXX3d0
...

Figure 13: tried to overwrite the PLT instead of the GOT.
Write what/where. We detected four instances of mistakes
where streamers were overwriting the wrong location with
an incorrect value. In two cases, in addition to the miscalcu-
lated offset, the payload contained either an incorrect order
of bytes or a misplaced function address and arguments.
Figure 14 contains a code snippet for the latter. In the
third scenario, the hacker misconfigured the ROP chain by
forgetting to pop a register value from the stack, but also
did not account for the stack space, thus moving to a non-
writable section of the binary. In the last case, the hacker
did not account for the moving stack when calculating the
offset for the format string vulnerability and failed to satisfy
the constraints for the exploit.

Hackers spent an average of 11 minutes to resolve these
issues, with a total time ranging from 5 to 18 minutes.

$ python -c "import struct; print ’AAAA’ * 24
+ struct.pack(’<L’, 0xDEADBEEF)
+ struct.pack(’<L’, 0xDEADCODE)
+ struct.pack(’<L’, 0xXXXXXXXX)*27" | ./vuln

Figure 14: used incorrect offset and order of a function
address and arguments.

A.2. Abandoning Issues

There were 23 abandoned issues in total with a cumu-
lative loss of time of more than 2 hours. Issues included
all 14 Strategy mistakes, four Programming/Miscellaneous,
two Tooling, and three Technical Issues. We observed aban-
donment occurred during different phases.

Six Strategy mistakes never explicitly manifested and
were realized on a mental level. Hackers spent from 9 to 23
minutes before forsaking their designs, excluding one case
where a hacker attempted to overwrite the GOT table entry
of free with system but the payload was too long for this.
As a consequence the hacker discarded the mistake within
seconds. Other solution design mistakes occurred when
hackers attempted to implement or test their idea leading to
a program crash or unintended output. Hackers spent from
1 to 13 minutes on these problems before abandoning them.

Two user input errors resulted from accidental mistyping
and miscalculating. One was quickly corrected after detec-
tion by viewers, the other led to failure in testing exploit and
caused a streamer to restart the sub-task he was focusing
on. Two other instances involved the incorrect setting of an
environment variable and reading stderr from pwntools,
which hackers abandoned after 40 seconds and 4 minutes
respectively, by finding alternative options.

Two cases of Tooling mistakes related to hackers failing
to find suitable memory addresses in GDB while designing
their solutions either due to using the wrong command
or forgetting about binary permissions. Both cases were
abandoned shortly after the failure.

In three cases, streamers experienced technical diffi-
culties related to utilized software or missing libraries for
running 32-bit applications. While two problems were aban-
doned at an early stage with the hacker finding another
approach to proceed with the challenge, the third issue,
involving an unsuccessful attempt to initialize register in
pwndbg, took 20 minutes before eventually being aban-
doned.

It is worth noting that despite abandoning some prob-
lems, hackers were able to complete all challenges.

A.3. Study Artifacts

Our study artifacts can be accessed at the fol-
lowing URL: https://github.com/sefcom/hackers-mistakes-
paper-public-access.

Issue Type Sub-type Sub-sub-type Count
Mistake Implementation Leak Wrong computation of addr from leaks 1 (1%)

Wrong exploit logic for leak 4 (3%)
Wrong format str specifier 3 (2%)
Wrong offset for leak 2 (2%)
Total 10 (8%)

Write What Mistake in payload 8 (6%)
Mistook address 3 (2%)
Rop chain 2 (2%)
Stack misalignment 2 (2%)
Wrong overwrite 3 (2%)
Total 18 (15%)

Write Where Mistake in offset 13 (10%)
Mistook addr of overwrite 3 (2%)
Pointer shift operations for write 2 (2%)
Total 18 (15%)

Write What Where Mistake in payload / Wrong offset 1 (1%)
Rop chain / wrong offset 1 (1%)
Wrong overwrite / wrong offset 2 (2%)
Total 4 (3%)

Total 50 (40%)
Programming/Misc Programming Exploit logic error 13 (10%)

Runtime exception error 19 (15%)
Syntax, compiler optimization 2 (2%)
Total 34 (27%)

Miscellaneous Analysis of wrong function 1 (1%)
Configuration error 1 (1%)
User input error 5 (4%)
Total 7 (6%)

Total 41 (33%)
Strategy Failed to trigger exploit 1 (1%)

Faulty payload 10 (8%)
Incompatible exploit 3 (2%)
Total 14 (11%)

Tooling Debug oversight 2 (2%)
Process control / debug config 4 (3%)
Wrong breakpoints 1 (1%)
Wrong command 5 (4%)
Total 12 (10%)

Total 117 (94%)
Tech issue Application problem 3 (2%)

Missing dependencies 2 (2%)
Rand. prog. behavior 2 (2%)
Total 7 (6%)

TABLE 3: Number of mistakes and technical issues identified in recordings.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper explores the types of and reasons for mistakes
made by hackers during the hacking process by analyzing
30 YouTube recordings of 11 content creators solving CTF-
style challenge. The authors identify 117 mistakes catego-
rized in four types and highlight factors contributing to these
mistakes, debugging strategies employed by hackers, tool
limitations, costs associated with mistakes, and potential
improvements in education design and tool development.

B.2. Scientific Contributions

• Provides a New Data Set For Public Use
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The paper provides a valuable contribution to the
field by exploring hackers’ mistakes and reasoning
made during the vulnerability identification and
exploitation process, moving beyond the focus of
prior work on the causes of vulnerabilities during
coding.

2) The paper describes a unique and creative approach
for security research, utilizing YouTube recordings
of content creators solving CTF-like challenges as
data source.

	Introduction
	Background and Related Work
	Method
	Data Collection
	Mistakes Analysis
	Mistake Anatomy
	Limitations

	Technical Analysis—What Mistakes?
	Implementation
	Programming/Miscellaneous
	Strategy
	Tooling
	Technical Issues

	Cost-Impact Analysis of Mistakes
	Behind Mistakes—Why Making Mistakes?
	Making Mistakes
	Fixing Mistakes
	Avoiding Mistakes

	Hacker Dynamics—Who Made Mistakes?
	Efficiency Increasing Strategies
	Navigating Tools and Tactics
	Hackers' Streaming Interactions
	Emotions and Attitudes

	Discussion and Recommendations
	Conclusions
	Appendix A
	Digging Into Implementation Mistakes
	Abandoning Issues
	Study Artifacts

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

